# Thread: A new Perspective on Dichotomies in Socionics - Pyramid Diagrams, Draft

1. Dichotomy Breakdown of IEI

IEI dichotomy breakdown.jpg

2. ## Error correction on all structural levels

I had a Eureka moment and realized I could do the same analysis I've been doing with the small groups on the dyad and type level. I didn't want to have to figure out all of those equations, so I wrote a program to do it for me \(^u^)/

This is written in Python, which you can run in browser [link]. Otherwise, here is the code
#Harmony Calculation for dichotomy level reinin structures

#Cell Index for excel
#Input needs to be in a single column, in the order:
#E, N, T, P, EN, ET, EP, NT, NP, TP, ENT, ENP, ETP, NTP, ENTP

#Starting at cell F2 for dichotomy E
startColumn = 'F'
startRow = 2

#Assign variables to excel input cells, in vector numerical order
P= startColumn+str(startRow+ 3) #0001
T= startColumn+str(startRow+ 2) #0010
TP= startColumn+str(startRow+ 9) #0011
N= startColumn+str(startRow+ 1) #0100
NP= startColumn+str(startRow+ 8) #0101
NT= startColumn+str(startRow+ 7) #0110
NTP= startColumn+str(startRow+13) #0111
E= startColumn+str(startRow+ 0) #1000
EP= startColumn+str(startRow+ 6) #1001
ET= startColumn+str(startRow+ 5) #1010
ETP= startColumn+str(startRow+12) #1011
EN= startColumn+str(startRow+ 4) #1100
ENP= startColumn+str(startRow+11) #1101
ENT= startColumn+str(startRow+10) #1110
ENTP=startColumn+str(startRow+14) #1111

#Dichotomy vectors put in list in numerical order
cellList = ['IDENTITY',P,T,TP,N,NP,NT,NTP,E,EP,ET,ETP,EN,ENP,E NT,ENTP]

#Dichotomy variable from index number
nameList = ['IDENTITY','P','T','TP','N','NP','NT','NTP','E','E P','ET','ETP','EN','ENP','ENT','ENTP']

#List Index
list1= [''] #0000
listP= [''] #0001
listT= [''] #0010
listTP= [''] #0011
listN= [''] #0100
listNP= [''] #0101
listNT= [''] #0110
listNTP= [''] #0111
listE= [''] #1000
listEP= [''] #1001
listET= [''] #1010
listETP= [''] #1011
listEN= [''] #1100
listENP= [''] #1101
listENT= [''] #1110
listENTP= [''] #1111

listList =
[list1,listP,listT,listTP,listN,listNP,listNT,listN TP,listE,listEP,listET,listETP,listEN,listENP,list ENT,listENTP]

#FUNCTIONS
#Print list items with line space at end
def printList(arg1):
i = 0
loop=len(arg1)
while (i < loop):
print(arg1[i])
i = i + 1
print ("")

#Add new item to bottom of list
list.insert(len(list),item)

#vector addition for two dichotomy vectors strings
v1=str(v1)
v2=str(v2)
a=( int(v1[0]) + int(v2[0]) )%2 #Mod 2 addition, 1+0=1 1+1=0
b=( int(v1[1]) + int(v2[1]) )%2
c=( int(v1[2]) + int(v2[2]) )%2
d=( int(v1[3]) + int(v2[3]) )%2
v3=str(a)+str(b)+str(c)+str(d) #Recontructs output vector string
return(v3)

#Converts boolean vector to decimal equivelent to use with list indexing
def vectorToInt (vector):
vector=str(vector)
a=int(vector[0])*8+int(vector[1])*4+int(vector[2])*2+int(vector[3])
return a

#Converts a number 0-15 into a vector string
def intToVector (integer):
integer = ''.join(str(1 & int(integer) >> i) for i in range(4)[::-1])
return integer

#Adds two integers as if they were vectors and returns an integer
int1 = intToVector(int1)
int2 = intToVector(int2)
int3 = vectorToInt(int3)
return int3

#PROGRAM

#Small group level constructions, 7 for each dichotomy
w=1
while (w<16):
vw=intToVector(w) #w as a vector
x=w+1
while (x<16):
vx=intToVector(x) #x as a vector
if vw!=vx:
formula = '='+cellList[w]+'*'+cellList[x]
x=x+1
w=w+1

#Dyad level constructions, 28 for each dichotomy
w=1
while (w<16):
vw=intToVector(w) #w as a vector
x=w+1
while (x<16):
vx=intToVector(x) #x as a vector
if w!=x:
y=x+1
while (y<16):
vy=intToVector(y) #y as a vector
formula = '='+cellList[w]+'*'+cellList[x]+'*'+cellList[y]
y=y+1
x=x+1
w=w+1

#Type level constructions, 56 for each dichotomy
w=1
while (w<16):
vw=intToVector(w) #w as a vector
x=w+1
while (x<16):
vx=intToVector(x) #x as a vector
if w!=x:
y=x+1
while (y<16):
vy=intToVector(y) #y as a vector
if vectorAdd(vw,vx)!=vy and vw!=vy and vx!=vy:
z=y+1
while (z<16):
vv1=vw
vv2=vx
vv3=vy
vz=intToVector(z) #z as a vector
if (vz!=vv1) and (vz!=vv2) and (vz!=vv3) and (vz!=vv4) and (vz!=vv5) and (vz!=vv6) and (vz!=vv7):
formula = '='+cellList[w]+'*'+cellList[x]+'*'+cellList[y]+'*'+cellList[z]
z=z+1
y=y+1
x=x+1
w=w+1

#PRINT RESULTS
#In vector numerical order, to be copied into Excel
i=1
while i<16:
vectorNum = i
print(nameList[vectorNum])
printList(listList[vectorNum])
print('--------------------')
print('')
i=i+1

#END PROGRAM
The program as posted is set to output excel cells for my dichotomy calculator. Changing a few things around [link], this is the output in Reinin notation:

E
Small Group Relations:
=N*EN
=T*ET
=P*EP
=NT*ENT
=NP*ENP
=TP*ETP
=NTP*ENTP

=N*T*ENT
=N*P*ENP
=N*ET*NT
=N*EP*NP
=N*TP*ENTP
=N*ETP*NTP
=T*P*ETP
=T*EN*NT
=T*EP*TP
=T*NP*ENTP
=T*ENP*NTP
=P*EN*NP
=P*ET*TP
=P*NT*ENTP
=P*ENT*NTP
=EN*ET*ENT
=EN*EP*ENP
=EN*TP*NTP
=EN*ETP*ENTP
=ET*EP*ETP
=ET*NP*NTP
=ET*ENP*ENTP
=EP*NT*NTP
=EP*ENT*ENTP
=NT*NP*ETP
=NT*TP*ENP
=NP*TP*ENT
=ENT*ENP*ETP

Type Relations:
=N*T*P*ENTP
=N*T*EP*NTP
=N*T*NP*ETP
=N*T*TP*ENP
=N*P*ET*NTP
=N*P*NT*ETP
=N*P*TP*ENT
=N*ET*EP*ENTP
=N*ET*NP*TP
=N*ET*ENP*ETP
=N*EP*NT*TP
=N*EP*ENT*ETP
=N*NT*NP*ENTP
=N*NT*ENP*NTP
=N*NP*ENT*NTP
=N*ENT*ENP*ENTP
=T*P*EN*NTP
=T*P*NT*ENP
=T*P*NP*ENT
=T*EN*EP*ENTP
=T*EN*NP*TP
=T*EN*ENP*ETP
=T*EP*NT*NP
=T*EP*ENT*ENP
=T*NT*TP*ENTP
=T*NT*ETP*NTP
=T*TP*ENT*NTP
=T*ENT*ETP*ENTP
=P*EN*ET*ENTP
=P*EN*NT*TP
=P*EN*ENT*ETP
=P*ET*NT*NP
=P*ET*ENT*ENP
=P*NP*TP*ENTP
=P*NP*ETP*NTP
=P*TP*ENP*NTP
=P*ENP*ETP*ENTP
=EN*ET*EP*NTP
=EN*ET*NP*ETP
=EN*ET*TP*ENP
=EN*EP*NT*ETP
=EN*EP*TP*ENT
=EN*NT*NP*NTP
=EN*NT*ENP*ENTP
=EN*NP*ENT*ENTP
=EN*ENT*ENP*NTP
=ET*EP*NT*ENP
=ET*EP*NP*ENT
=ET*NT*TP*NTP
=ET*NT*ETP*ENTP
=ET*TP*ENT*ENTP
=ET*ENT*ETP*NTP
=EP*NP*TP*NTP
=EP*NP*ETP*ENTP
=EP*TP*ENP*ENTP
=EP*ENP*ETP*NTP

N
Small Group Relations:
=E*EN
=T*NT
=P*NP
=ET*ENT
=EP*ENP
=TP*NTP
=ETP*ENTP

=E*T*ENT
=E*P*ENP
=E*ET*NT
=E*EP*NP
=E*TP*ENTP
=E*ETP*NTP
=T*P*NTP
=T*EN*ET
=T*EP*ENTP
=T*NP*TP
=T*ENP*ETP
=P*EN*EP
=P*ET*ENTP
=P*NT*TP
=P*ENT*ETP
=EN*NT*ENT
=EN*NP*ENP
=EN*TP*ETP
=EN*NTP*ENTP
=ET*EP*NTP
=ET*NP*ETP
=ET*TP*ENP
=EP*NT*ETP
=EP*TP*ENT
=NT*NP*NTP
=NT*ENP*ENTP
=NP*ENT*ENTP
=ENT*ENP*NTP

Type Relations:
=E*T*P*ENTP
=E*T*EP*NTP
=E*T*NP*ETP
=E*T*TP*ENP
=E*P*ET*NTP
=E*P*NT*ETP
=E*P*TP*ENT
=E*ET*EP*ENTP
=E*ET*NP*TP
=E*ET*ENP*ETP
=E*EP*NT*TP
=E*EP*ENT*ETP
=E*NT*NP*ENTP
=E*NT*ENP*NTP
=E*NP*ENT*NTP
=E*ENT*ENP*ENTP
=T*P*EN*ETP
=T*P*ET*ENP
=T*P*EP*ENT
=T*EN*EP*TP
=T*EN*NP*ENTP
=T*EN*ENP*NTP
=T*ET*EP*NP
=T*ET*TP*ENTP
=T*ET*ETP*NTP
=T*NP*ENT*ENP
=T*TP*ENT*ETP
=T*ENT*NTP*ENTP
=P*EN*ET*TP
=P*EN*NT*ENTP
=P*EN*ENT*NTP
=P*ET*EP*NT
=P*EP*TP*ENTP
=P*EP*ETP*NTP
=P*NT*ENT*ENP
=P*TP*ENP*ETP
=P*ENP*NTP*ENTP
=EN*ET*EP*ETP
=EN*ET*NP*NTP
=EN*ET*ENP*ENTP
=EN*EP*NT*NTP
=EN*EP*ENT*ENTP
=EN*NT*NP*ETP
=EN*NT*TP*ENP
=EN*NP*TP*ENT
=EN*ENT*ENP*ETP
=ET*NT*NP*ENP
=ET*NT*TP*ETP
=ET*NT*NTP*ENTP
=EP*NT*NP*ENT
=EP*NP*TP*ETP
=EP*NP*NTP*ENTP
=NT*TP*ENT*ENTP
=NT*ENT*ETP*NTP
=NP*TP*ENP*ENTP
=NP*ENP*ETP*NTP

T
Small Group Relations:
=E*ET
=N*NT
=P*TP
=EN*ENT
=EP*ETP
=NP*NTP
=ENP*ENTP

=E*N*ENT
=E*P*ETP
=E*EN*NT
=E*EP*TP
=E*NP*ENTP
=E*ENP*NTP
=N*P*NTP
=N*EN*ET
=N*EP*ENTP
=N*NP*TP
=N*ENP*ETP
=P*EN*ENTP
=P*ET*EP
=P*NT*NP
=P*ENT*ENP
=EN*EP*NTP
=EN*NP*ETP
=EN*TP*ENP
=ET*NT*ENT
=ET*NP*ENP
=ET*TP*ETP
=ET*NTP*ENTP
=EP*NT*ENP
=EP*NP*ENT
=NT*TP*NTP
=NT*ETP*ENTP
=TP*ENT*ENTP
=ENT*ETP*NTP

Type Relations:
=E*N*P*ENTP
=E*N*EP*NTP
=E*N*NP*ETP
=E*N*TP*ENP
=E*P*EN*NTP
=E*P*NT*ENP
=E*P*NP*ENT
=E*EN*EP*ENTP
=E*EN*NP*TP
=E*EN*ENP*ETP
=E*EP*NT*NP
=E*EP*ENT*ENP
=E*NT*TP*ENTP
=E*NT*ETP*NTP
=E*TP*ENT*NTP
=E*ENT*ETP*ENTP
=N*P*EN*ETP
=N*P*ET*ENP
=N*P*EP*ENT
=N*EN*EP*TP
=N*EN*NP*ENTP
=N*EN*ENP*NTP
=N*ET*EP*NP
=N*ET*TP*ENTP
=N*ET*ETP*NTP
=N*NP*ENT*ENP
=N*TP*ENT*ETP
=N*ENT*NTP*ENTP
=P*EN*ET*NP
=P*EN*EP*NT
=P*ET*NT*ENTP
=P*ET*ENT*NTP
=P*EP*NP*ENTP
=P*EP*ENP*NTP
=P*NT*ENT*ETP
=P*NP*ENP*ETP
=P*ETP*NTP*ENTP
=EN*ET*EP*ENP
=EN*ET*TP*NTP
=EN*ET*ETP*ENTP
=EN*NT*NP*ENP
=EN*NT*TP*ETP
=EN*NT*NTP*ENTP
=ET*EP*NT*NTP
=ET*EP*ENT*ENTP
=ET*NT*NP*ETP
=ET*NT*TP*ENP
=ET*NP*TP*ENT
=ET*ENT*ENP*ETP
=EP*NT*TP*ENT
=EP*NP*TP*ENP
=EP*TP*NTP*ENTP
=NT*NP*ENT*ENTP
=NT*ENT*ENP*NTP
=NP*TP*ETP*ENTP
=TP*ENP*ETP*NTP

P
Small Group Relations:
=E*EP
=N*NP
=T*TP
=EN*ENP
=ET*ETP
=NT*NTP
=ENT*ENTP

=E*N*ENP
=E*T*ETP
=E*EN*NP
=E*ET*TP
=E*NT*ENTP
=E*ENT*NTP
=N*T*NTP
=N*EN*EP
=N*ET*ENTP
=N*NT*TP
=N*ENT*ETP
=T*EN*ENTP
=T*ET*EP
=T*NT*NP
=T*ENT*ENP
=EN*ET*NTP
=EN*NT*ETP
=EN*TP*ENT
=ET*NT*ENP
=ET*NP*ENT
=EP*NT*ENT
=EP*NP*ENP
=EP*TP*ETP
=EP*NTP*ENTP
=NP*TP*NTP
=NP*ETP*ENTP
=TP*ENP*ENTP
=ENP*ETP*NTP

Type Relations:
=E*N*T*ENTP
=E*N*ET*NTP
=E*N*NT*ETP
=E*N*TP*ENT
=E*T*EN*NTP
=E*T*NT*ENP
=E*T*NP*ENT
=E*EN*ET*ENTP
=E*EN*NT*TP
=E*EN*ENT*ETP
=E*ET*NT*NP
=E*ET*ENT*ENP
=E*NP*TP*ENTP
=E*NP*ETP*NTP
=E*TP*ENP*NTP
=E*ENP*ETP*ENTP
=N*T*EN*ETP
=N*T*ET*ENP
=N*T*EP*ENT
=N*EN*ET*TP
=N*EN*NT*ENTP
=N*EN*ENT*NTP
=N*ET*EP*NT
=N*EP*TP*ENTP
=N*EP*ETP*NTP
=N*NT*ENT*ENP
=N*TP*ENP*ETP
=N*ENP*NTP*ENTP
=T*EN*ET*NP
=T*EN*EP*NT
=T*ET*NT*ENTP
=T*ET*ENT*NTP
=T*EP*NP*ENTP
=T*EP*ENP*NTP
=T*NT*ENT*ETP
=T*NP*ENP*ETP
=T*ETP*NTP*ENTP
=EN*ET*EP*ENT
=EN*EP*TP*NTP
=EN*EP*ETP*ENTP
=EN*NT*NP*ENT
=EN*NP*TP*ETP
=EN*NP*NTP*ENTP
=ET*EP*NP*NTP
=ET*EP*ENP*ENTP
=ET*NT*TP*ENT
=ET*NP*TP*ENP
=ET*TP*NTP*ENTP
=EP*NT*NP*ETP
=EP*NT*TP*ENP
=EP*NP*TP*ENT
=EP*ENT*ENP*ETP
=NT*NP*ENP*ENTP
=NT*TP*ETP*ENTP
=NP*ENT*ENP*NTP
=TP*ENT*ETP*NTP

EN
Small Group Relations:
=E*N
=T*ENT
=P*ENP
=ET*NT
=EP*NP
=TP*ENTP
=ETP*NTP

=E*T*NT
=E*P*NP
=E*ET*ENT
=E*EP*ENP
=E*TP*NTP
=E*ETP*ENTP
=N*T*ET
=N*P*EP
=N*NT*ENT
=N*NP*ENP
=N*TP*ETP
=N*NTP*ENTP
=T*P*ENTP
=T*EP*NTP
=T*NP*ETP
=T*TP*ENP
=P*ET*NTP
=P*NT*ETP
=P*TP*ENT
=ET*EP*ENTP
=ET*NP*TP
=ET*ENP*ETP
=EP*NT*TP
=EP*ENT*ETP
=NT*NP*ENTP
=NT*ENP*NTP
=NP*ENT*NTP
=ENT*ENP*ENTP

Type Relations:
=E*T*P*NTP
=E*T*EP*ENTP
=E*T*NP*TP
=E*T*ENP*ETP
=E*P*ET*ENTP
=E*P*NT*TP
=E*P*ENT*ETP
=E*ET*EP*NTP
=E*ET*NP*ETP
=E*ET*TP*ENP
=E*EP*NT*ETP
=E*EP*TP*ENT
=E*NT*NP*NTP
=E*NT*ENP*ENTP
=E*NP*ENT*ENTP
=E*ENT*ENP*NTP
=N*T*P*ETP
=N*T*EP*TP
=N*T*NP*ENTP
=N*T*ENP*NTP
=N*P*ET*TP
=N*P*NT*ENTP
=N*P*ENT*NTP
=N*ET*EP*ETP
=N*ET*NP*NTP
=N*ET*ENP*ENTP
=N*EP*NT*NTP
=N*EP*ENT*ENTP
=N*NT*NP*ETP
=N*NT*TP*ENP
=N*NP*TP*ENT
=N*ENT*ENP*ETP
=T*P*ET*NP
=T*P*EP*NT
=T*ET*EP*ENP
=T*ET*TP*NTP
=T*ET*ETP*ENTP
=T*NT*NP*ENP
=T*NT*TP*ETP
=T*NT*NTP*ENTP
=P*ET*EP*ENT
=P*EP*TP*NTP
=P*EP*ETP*ENTP
=P*NT*NP*ENT
=P*NP*TP*ETP
=P*NP*NTP*ENTP
=ET*NP*ENT*ENP
=ET*TP*ENT*ETP
=ET*ENT*NTP*ENTP
=EP*NT*ENT*ENP
=EP*TP*ENP*ETP
=EP*ENP*NTP*ENTP
=NT*TP*ENT*NTP
=NT*ENT*ETP*ENTP
=NP*TP*ENP*NTP
=NP*ENP*ETP*ENTP

ET
Small Group Relations:
=E*T
=N*ENT
=P*ETP
=EN*NT
=EP*TP
=NP*ENTP
=ENP*NTP

=E*N*NT
=E*P*TP
=E*EN*ENT
=E*EP*ETP
=E*NP*NTP
=E*ENP*ENTP
=N*T*EN
=N*P*ENTP
=N*EP*NTP
=N*NP*ETP
=N*TP*ENP
=T*P*EP
=T*NT*ENT
=T*NP*ENP
=T*TP*ETP
=T*NTP*ENTP
=P*EN*NTP
=P*NT*ENP
=P*NP*ENT
=EN*EP*ENTP
=EN*NP*TP
=EN*ENP*ETP
=EP*NT*NP
=EP*ENT*ENP
=NT*TP*ENTP
=NT*ETP*NTP
=TP*ENT*NTP
=ENT*ETP*ENTP

Type Relations:
=E*N*P*NTP
=E*N*EP*ENTP
=E*N*NP*TP
=E*N*ENP*ETP
=E*P*EN*ENTP
=E*P*NT*NP
=E*P*ENT*ENP
=E*EN*EP*NTP
=E*EN*NP*ETP
=E*EN*TP*ENP
=E*EP*NT*ENP
=E*EP*NP*ENT
=E*NT*TP*NTP
=E*NT*ETP*ENTP
=E*TP*ENT*ENTP
=E*ENT*ETP*NTP
=N*T*P*ENP
=N*T*EP*NP
=N*T*TP*ENTP
=N*T*ETP*NTP
=N*P*EN*TP
=N*P*EP*NT
=N*EN*EP*ETP
=N*EN*NP*NTP
=N*EN*ENP*ENTP
=N*NT*NP*ENP
=N*NT*TP*ETP
=N*NT*NTP*ENTP
=T*P*EN*NP
=T*P*NT*ENTP
=T*P*ENT*NTP
=T*EN*EP*ENP
=T*EN*TP*NTP
=T*EN*ETP*ENTP
=T*EP*NT*NTP
=T*EP*ENT*ENTP
=T*NT*NP*ETP
=T*NT*TP*ENP
=T*NP*TP*ENT
=T*ENT*ENP*ETP
=P*EN*EP*ENT
=P*EP*NP*NTP
=P*EP*ENP*ENTP
=P*NT*TP*ENT
=P*NP*TP*ENP
=P*TP*NTP*ENTP
=EN*NP*ENT*ENP
=EN*TP*ENT*ETP
=EN*ENT*NTP*ENTP
=EP*NT*ENT*ETP
=EP*NP*ENP*ETP
=EP*ETP*NTP*ENTP
=NT*NP*ENT*NTP
=NT*ENT*ENP*ENTP
=NP*TP*ETP*NTP
=TP*ENP*ETP*ENTP

EP
Small Group Relations:
=E*P
=N*ENP
=T*ETP
=EN*NP
=ET*TP
=NT*ENTP
=ENT*NTP

=E*N*NP
=E*T*TP
=E*EN*ENP
=E*ET*ETP
=E*NT*NTP
=E*ENT*ENTP
=N*T*ENTP
=N*P*EN
=N*ET*NTP
=N*NT*ETP
=N*TP*ENT
=T*P*ET
=T*EN*NTP
=T*NT*ENP
=T*NP*ENT
=P*NT*ENT
=P*NP*ENP
=P*TP*ETP
=P*NTP*ENTP
=EN*ET*ENTP
=EN*NT*TP
=EN*ENT*ETP
=ET*NT*NP
=ET*ENT*ENP
=NP*TP*ENTP
=NP*ETP*NTP
=TP*ENP*NTP
=ENP*ETP*ENTP

Type Relations:
=E*N*T*NTP
=E*N*ET*ENTP
=E*N*NT*TP
=E*N*ENT*ETP
=E*T*EN*ENTP
=E*T*NT*NP
=E*T*ENT*ENP
=E*EN*ET*NTP
=E*EN*NT*ETP
=E*EN*TP*ENT
=E*ET*NT*ENP
=E*ET*NP*ENT
=E*NP*TP*NTP
=E*NP*ETP*ENTP
=E*TP*ENP*ENTP
=E*ENP*ETP*NTP
=N*T*P*ENT
=N*T*EN*TP
=N*T*ET*NP
=N*P*ET*NT
=N*P*TP*ENTP
=N*P*ETP*NTP
=N*EN*ET*ETP
=N*EN*NT*NTP
=N*EN*ENT*ENTP
=N*NT*NP*ENT
=N*NP*TP*ETP
=N*NP*NTP*ENTP
=T*P*EN*NT
=T*P*NP*ENTP
=T*P*ENP*NTP
=T*EN*ET*ENP
=T*ET*NT*NTP
=T*ET*ENT*ENTP
=T*NT*TP*ENT
=T*NP*TP*ENP
=T*TP*NTP*ENTP
=P*EN*ET*ENT
=P*EN*TP*NTP
=P*EN*ETP*ENTP
=P*ET*NP*NTP
=P*ET*ENP*ENTP
=P*NT*NP*ETP
=P*NT*TP*ENP
=P*NP*TP*ENT
=P*ENT*ENP*ETP
=EN*NT*ENT*ENP
=EN*TP*ENP*ETP
=EN*ENP*NTP*ENTP
=ET*NT*ENT*ETP
=ET*NP*ENP*ETP
=ET*ETP*NTP*ENTP
=NT*NP*ENP*NTP
=NT*TP*ETP*NTP
=NP*ENT*ENP*ENTP
=TP*ENT*ETP*ENTP

NT
Small Group Relations:
=E*ENT
=N*T
=P*NTP
=EN*ET
=EP*ENTP
=NP*TP
=ENP*ETP

=E*N*ET
=E*T*EN
=E*P*ENTP
=E*EP*NTP
=E*NP*ETP
=E*TP*ENP
=N*P*TP
=N*EN*ENT
=N*EP*ETP
=N*NP*NTP
=N*ENP*ENTP
=T*P*NP
=T*ET*ENT
=T*EP*ENP
=T*TP*NTP
=T*ETP*ENTP
=P*EN*ETP
=P*ET*ENP
=P*EP*ENT
=EN*EP*TP
=EN*NP*ENTP
=EN*ENP*NTP
=ET*EP*NP
=ET*TP*ENTP
=ET*ETP*NTP
=NP*ENT*ENP
=TP*ENT*ETP
=ENT*NTP*ENTP

Type Relations:
=E*N*P*ETP
=E*N*EP*TP
=E*N*NP*ENTP
=E*N*ENP*NTP
=E*T*P*ENP
=E*T*EP*NP
=E*T*TP*ENTP
=E*T*ETP*NTP
=E*P*EN*TP
=E*P*ET*NP
=E*EN*EP*ETP
=E*EN*NP*NTP
=E*EN*ENP*ENTP
=E*ET*EP*ENP
=E*ET*TP*NTP
=E*ET*ETP*ENTP
=N*P*EN*ENTP
=N*P*ET*EP
=N*P*ENT*ENP
=N*EN*EP*NTP
=N*EN*NP*ETP
=N*EN*TP*ENP
=N*ET*NP*ENP
=N*ET*TP*ETP
=N*ET*NTP*ENTP
=N*EP*NP*ENT
=N*TP*ENT*ENTP
=N*ENT*ETP*NTP
=T*P*EN*EP
=T*P*ET*ENTP
=T*P*ENT*ETP
=T*EN*NP*ENP
=T*EN*TP*ETP
=T*EN*NTP*ENTP
=T*ET*EP*NTP
=T*ET*NP*ETP
=T*ET*TP*ENP
=T*EP*TP*ENT
=T*NP*ENT*ENTP
=T*ENT*ENP*NTP
=P*EN*NP*ENT
=P*ET*TP*ENT
=P*EP*NP*ETP
=P*EP*TP*ENP
=P*NP*ENP*ENTP
=P*TP*ETP*ENTP
=EN*EP*ENT*ENP
=EN*TP*ENT*NTP
=EN*ENT*ETP*ENTP
=ET*EP*ENT*ETP
=ET*NP*ENT*NTP
=ET*ENT*ENP*ENTP
=EP*NP*ENP*NTP
=EP*TP*ETP*NTP
=NP*ETP*NTP*ENTP
=TP*ENP*NTP*ENTP

NP
Small Group Relations:
=E*ENP
=N*P
=T*NTP
=EN*EP
=ET*ENTP
=NT*TP
=ENT*ETP

=E*N*EP
=E*T*ENTP
=E*P*EN
=E*ET*NTP
=E*NT*ETP
=E*TP*ENT
=N*T*TP
=N*EN*ENP
=N*ET*ETP
=N*NT*NTP
=N*ENT*ENTP
=T*P*NT
=T*EN*ETP
=T*ET*ENP
=T*EP*ENT
=P*ET*ENT
=P*EP*ENP
=P*TP*NTP
=P*ETP*ENTP
=EN*ET*TP
=EN*NT*ENTP
=EN*ENT*NTP
=ET*EP*NT
=EP*TP*ENTP
=EP*ETP*NTP
=NT*ENT*ENP
=TP*ENP*ETP
=ENP*NTP*ENTP

Type Relations:
=E*N*T*ETP
=E*N*ET*TP
=E*N*NT*ENTP
=E*N*ENT*NTP
=E*T*P*ENT
=E*T*EN*TP
=E*T*EP*NT
=E*P*ET*NT
=E*P*TP*ENTP
=E*P*ETP*NTP
=E*EN*ET*ETP
=E*EN*NT*NTP
=E*EN*ENT*ENTP
=E*ET*EP*ENT
=E*EP*TP*NTP
=E*EP*ETP*ENTP
=N*T*EN*ENTP
=N*T*ET*EP
=N*T*ENT*ENP
=N*EN*ET*NTP
=N*EN*NT*ETP
=N*EN*TP*ENT
=N*ET*NT*ENP
=N*EP*NT*ENT
=N*EP*TP*ETP
=N*EP*NTP*ENTP
=N*TP*ENP*ENTP
=N*ENP*ETP*NTP
=T*P*EN*ET
=T*P*EP*ENTP
=T*P*ENP*ETP
=T*EN*NT*ENP
=T*ET*NT*ETP
=T*ET*TP*ENT
=T*EP*TP*ENP
=T*NT*ENT*ENTP
=T*TP*ETP*ENTP
=P*EN*NT*ENT
=P*EN*TP*ETP
=P*EN*NTP*ENTP
=P*ET*EP*NTP
=P*ET*TP*ENP
=P*EP*NT*ETP
=P*EP*TP*ENT
=P*NT*ENP*ENTP
=P*ENT*ENP*NTP
=EN*ET*ENT*ENP
=EN*TP*ENP*NTP
=EN*ENP*ETP*ENTP
=ET*EP*ENP*ETP
=ET*NT*ENT*NTP
=ET*TP*ETP*NTP
=EP*NT*ENP*NTP
=EP*ENT*ENP*ENTP
=NT*ETP*NTP*ENTP
=TP*ENT*NTP*ENTP

TP
Small Group Relations:
=E*ETP
=N*NTP
=T*P
=EN*ENTP
=ET*EP
=NT*NP
=ENT*ENP

=E*N*ENTP
=E*T*EP
=E*P*ET
=E*EN*NTP
=E*NT*ENP
=E*NP*ENT
=N*T*NP
=N*P*NT
=N*EN*ETP
=N*ET*ENP
=N*EP*ENT
=T*EN*ENP
=T*ET*ETP
=T*NT*NTP
=T*ENT*ENTP
=P*EN*ENT
=P*EP*ETP
=P*NP*NTP
=P*ENP*ENTP
=EN*ET*NP
=EN*EP*NT
=ET*NT*ENTP
=ET*ENT*NTP
=EP*NP*ENTP
=EP*ENP*NTP
=NT*ENT*ETP
=NP*ENP*ETP
=ETP*NTP*ENTP

Type Relations:
=E*N*T*ENP
=E*N*P*ENT
=E*N*ET*NP
=E*N*EP*NT
=E*T*EN*NP
=E*T*NT*ENTP
=E*T*ENT*NTP
=E*P*EN*NT
=E*P*NP*ENTP
=E*P*ENP*NTP
=E*EN*ET*ENP
=E*EN*EP*ENT
=E*ET*NT*NTP
=E*ET*ENT*ENTP
=E*EP*NP*NTP
=E*EP*ENP*ENTP
=N*T*EN*EP
=N*T*ET*ENTP
=N*T*ENT*ETP
=N*P*EN*ET
=N*P*EP*ENTP
=N*P*ENP*ETP
=N*EN*NT*ENP
=N*EN*NP*ENT
=N*ET*NT*ETP
=N*EP*NP*ETP
=N*NT*ENT*ENTP
=N*NP*ENP*ENTP
=T*EN*ET*NTP
=T*EN*NT*ETP
=T*ET*NT*ENP
=T*ET*NP*ENT
=T*EP*NT*ENT
=T*EP*NP*ENP
=T*EP*NTP*ENTP
=T*NP*ETP*ENTP
=T*ENP*ETP*NTP
=P*EN*EP*NTP
=P*EN*NP*ETP
=P*ET*NT*ENT
=P*ET*NP*ENP
=P*ET*NTP*ENTP
=P*EP*NT*ENP
=P*EP*NP*ENT
=P*NT*ETP*ENTP
=P*ENT*ETP*NTP
=EN*ET*ENT*ETP
=EN*EP*ENP*ETP
=EN*NT*ENT*NTP
=EN*NP*ENP*NTP
=ET*NP*ETP*NTP
=ET*ENP*ETP*ENTP
=EP*NT*ETP*NTP
=EP*ENT*ETP*ENTP
=NT*ENP*NTP*ENTP
=NP*ENT*NTP*ENTP

ENT
Small Group Relations:
=E*NT
=N*ET
=T*EN
=P*ENTP
=EP*NTP
=NP*ETP
=TP*ENP

=E*N*T
=E*P*NTP
=E*EN*ET
=E*EP*ENTP
=E*NP*TP
=E*ENP*ETP
=N*P*ETP
=N*EN*NT
=N*EP*TP
=N*NP*ENTP
=N*ENP*NTP
=T*P*ENP
=T*ET*NT
=T*EP*NP
=T*TP*ENTP
=T*ETP*NTP
=P*EN*TP
=P*ET*NP
=P*EP*NT
=EN*EP*ETP
=EN*NP*NTP
=EN*ENP*ENTP
=ET*EP*ENP
=ET*TP*NTP
=ET*ETP*ENTP
=NT*NP*ENP
=NT*TP*ETP
=NT*NTP*ENTP

Type Relations:
=E*N*P*TP
=E*N*EP*ETP
=E*N*NP*NTP
=E*N*ENP*ENTP
=E*T*P*NP
=E*T*EP*ENP
=E*T*TP*NTP
=E*T*ETP*ENTP
=E*P*EN*ETP
=E*P*ET*ENP
=E*EN*EP*TP
=E*EN*NP*ENTP
=E*EN*ENP*NTP
=E*ET*EP*NP
=E*ET*TP*ENTP
=E*ET*ETP*NTP
=N*T*P*EP
=N*T*NP*ENP
=N*T*TP*ETP
=N*T*NTP*ENTP
=N*P*EN*NTP
=N*P*NT*ENP
=N*EN*EP*ENTP
=N*EN*NP*TP
=N*EN*ENP*ETP
=N*EP*NT*NP
=N*NT*TP*ENTP
=N*NT*ETP*NTP
=T*P*ET*NTP
=T*P*NT*ETP
=T*ET*EP*ENTP
=T*ET*NP*TP
=T*ET*ENP*ETP
=T*EP*NT*TP
=T*NT*NP*ENTP
=T*NT*ENP*NTP
=P*EN*ET*EP
=P*EN*NT*NP
=P*ET*NT*TP
=P*EP*NP*TP
=P*EP*ENP*ETP
=P*NP*ENP*NTP
=P*TP*ETP*NTP
=EN*ET*NP*ENP
=EN*ET*TP*ETP
=EN*ET*NTP*ENTP
=EN*EP*NT*ENP
=EN*NT*TP*NTP
=EN*NT*ETP*ENTP
=ET*EP*NT*ETP
=ET*NT*NP*NTP
=ET*NT*ENP*ENTP
=EP*NP*ENP*ENTP
=EP*TP*ETP*ENTP
=NP*TP*NTP*ENTP
=ENP*ETP*NTP*ENTP

ENP
Small Group Relations:
=E*NP
=N*EP
=T*ENTP
=P*EN
=ET*NTP
=NT*ETP
=TP*ENT

=E*N*P
=E*T*NTP
=E*EN*EP
=E*ET*ENTP
=E*NT*TP
=E*ENT*ETP
=N*T*ETP
=N*EN*NP
=N*ET*TP
=N*NT*ENTP
=N*ENT*NTP
=T*P*ENT
=T*EN*TP
=T*ET*NP
=T*EP*NT
=P*ET*NT
=P*EP*NP
=P*TP*ENTP
=P*ETP*NTP
=EN*ET*ETP
=EN*NT*NTP
=EN*ENT*ENTP
=ET*EP*ENT
=EP*TP*NTP
=EP*ETP*ENTP
=NT*NP*ENT
=NP*TP*ETP
=NP*NTP*ENTP

Type Relations:
=E*N*T*TP
=E*N*ET*ETP
=E*N*NT*NTP
=E*N*ENT*ENTP
=E*T*P*NT
=E*T*EN*ETP
=E*T*EP*ENT
=E*P*ET*ENT
=E*P*TP*NTP
=E*P*ETP*ENTP
=E*EN*ET*TP
=E*EN*NT*ENTP
=E*EN*ENT*NTP
=E*ET*EP*NT
=E*EP*TP*ENTP
=E*EP*ETP*NTP
=N*T*P*ET
=N*T*EN*NTP
=N*T*NP*ENT
=N*P*NT*ENT
=N*P*TP*ETP
=N*P*NTP*ENTP
=N*EN*ET*ENTP
=N*EN*NT*TP
=N*EN*ENT*ETP
=N*ET*NT*NP
=N*NP*TP*ENTP
=N*NP*ETP*NTP
=T*P*EP*NTP
=T*P*NP*ETP
=T*EN*ET*EP
=T*EN*NT*NP
=T*ET*NT*TP
=T*ET*ENT*ETP
=T*EP*NP*TP
=T*NT*ENT*NTP
=T*TP*ETP*NTP
=P*ET*EP*ENTP
=P*ET*NP*TP
=P*EP*NT*TP
=P*EP*ENT*ETP
=P*NT*NP*ENTP
=P*NP*ENT*NTP
=EN*ET*NP*ENT
=EN*EP*NT*ENT
=EN*EP*TP*ETP
=EN*EP*NTP*ENTP
=EN*NP*TP*NTP
=EN*NP*ETP*ENTP
=ET*EP*NP*ETP
=ET*NT*ENT*ENTP
=ET*TP*ETP*ENTP
=EP*NT*NP*NTP
=EP*NP*ENT*ENTP
=NT*TP*NTP*ENTP
=ENT*ETP*NTP*ENTP

ETP
Small Group Relations:
=E*TP
=N*ENTP
=T*EP
=P*ET
=EN*NTP
=NT*ENP
=NP*ENT

=E*N*NTP
=E*T*P
=E*EN*ENTP
=E*ET*EP
=E*NT*NP
=E*ENT*ENP
=N*T*ENP
=N*P*ENT
=N*EN*TP
=N*ET*NP
=N*EP*NT
=T*EN*NP
=T*ET*TP
=T*NT*ENTP
=T*ENT*NTP
=P*EN*NT
=P*EP*TP
=P*NP*ENTP
=P*ENP*NTP
=EN*ET*ENP
=EN*EP*ENT
=ET*NT*NTP
=ET*ENT*ENTP
=EP*NP*NTP
=EP*ENP*ENTP
=NT*TP*ENT
=NP*TP*ENP
=TP*NTP*ENTP

Type Relations:
=E*N*T*NP
=E*N*P*NT
=E*N*ET*ENP
=E*N*EP*ENT
=E*T*EN*ENP
=E*T*NT*NTP
=E*T*ENT*ENTP
=E*P*EN*ENT
=E*P*NP*NTP
=E*P*ENP*ENTP
=E*EN*ET*NP
=E*EN*EP*NT
=E*ET*NT*ENTP
=E*ET*ENT*NTP
=E*EP*NP*ENTP
=E*EP*ENP*NTP
=N*T*P*EN
=N*T*ET*NTP
=N*T*TP*ENT
=N*P*EP*NTP
=N*P*TP*ENP
=N*EN*ET*EP
=N*EN*NT*NP
=N*EN*ENT*ENP
=N*ET*NT*TP
=N*EP*NP*TP
=N*NT*ENT*NTP
=N*NP*ENP*NTP
=T*P*NT*ENT
=T*P*NP*ENP
=T*P*NTP*ENTP
=T*EN*ET*ENTP
=T*EN*NT*TP
=T*ET*NT*NP
=T*ET*ENT*ENP
=T*NP*TP*ENTP
=T*TP*ENP*NTP
=P*EN*EP*ENTP
=P*EN*NP*TP
=P*EP*NT*NP
=P*EP*ENT*ENP
=P*NT*TP*ENTP
=P*TP*ENT*NTP
=EN*ET*TP*ENT
=EN*EP*TP*ENP
=EN*NT*ENT*ENTP
=EN*NP*ENP*ENTP
=ET*EP*NT*ENT
=ET*EP*NP*ENP
=ET*EP*NTP*ENTP
=ET*NP*TP*NTP
=ET*TP*ENP*ENTP
=EP*NT*TP*NTP
=EP*TP*ENT*ENTP
=NT*NP*NTP*ENTP
=ENT*ENP*NTP*ENTP

NTP
Small Group Relations:
=E*ENTP
=N*TP
=T*NP
=P*NT
=EN*ETP
=ET*ENP
=EP*ENT

=E*N*ETP
=E*T*ENP
=E*P*ENT
=E*EN*TP
=E*ET*NP
=E*EP*NT
=N*T*P
=N*EN*ENTP
=N*ET*EP
=N*NT*NP
=N*ENT*ENP
=T*EN*EP
=T*ET*ENTP
=T*NT*TP
=T*ENT*ETP
=P*EN*ET
=P*EP*ENTP
=P*NP*TP
=P*ENP*ETP
=EN*NT*ENP
=EN*NP*ENT
=ET*NT*ETP
=ET*TP*ENT
=EP*NP*ETP
=EP*TP*ENP
=NT*ENT*ENTP
=NP*ENP*ENTP
=TP*ETP*ENTP

Type Relations:
=E*N*T*EP
=E*N*P*ET
=E*N*NT*ENP
=E*N*NP*ENT
=E*T*P*EN
=E*T*NT*ETP
=E*T*TP*ENT
=E*P*NP*ETP
=E*P*TP*ENP
=E*EN*ET*EP
=E*EN*NT*NP
=E*EN*ENT*ENP
=E*ET*NT*TP
=E*ET*ENT*ETP
=E*EP*NP*TP
=E*EP*ENP*ETP
=N*T*EN*ENP
=N*T*ET*ETP
=N*T*ENT*ENTP
=N*P*EN*ENT
=N*P*EP*ETP
=N*P*ENP*ENTP
=N*EN*ET*NP
=N*EN*EP*NT
=N*ET*NT*ENTP
=N*EP*NP*ENTP
=N*NT*ENT*ETP
=N*NP*ENP*ETP
=T*P*ET*ENT
=T*P*EP*ENP
=T*P*ETP*ENTP
=T*EN*ET*TP
=T*EN*NT*ENTP
=T*ET*EP*NT
=T*EP*TP*ENTP
=T*NT*ENT*ENP
=T*TP*ENP*ETP
=P*EN*EP*TP
=P*EN*NP*ENTP
=P*ET*EP*NP
=P*ET*TP*ENTP
=P*NP*ENT*ENP
=P*TP*ENT*ETP
=EN*ET*ENT*ENTP
=EN*EP*ENP*ENTP
=EN*NT*TP*ENT
=EN*NP*TP*ENP
=ET*EP*ETP*ENTP
=ET*NT*NP*ENT
=ET*NP*TP*ETP
=EP*NT*NP*ENP
=EP*NT*TP*ETP
=NT*NP*ETP*ENTP
=NT*TP*ENP*ENTP
=NP*TP*ENT*ENTP
=ENT*ENP*ETP*ENTP

ENTP
Small Group Relations:
=E*NTP
=N*ETP
=T*ENP
=P*ENT
=EN*TP
=ET*NP
=EP*NT

=E*N*TP
=E*T*NP
=E*P*NT
=E*EN*ETP
=E*ET*ENP
=E*EP*ENT
=N*T*EP
=N*P*ET
=N*EN*NTP
=N*NT*ENP
=N*NP*ENT
=T*P*EN
=T*ET*NTP
=T*NT*ETP
=T*TP*ENT
=P*EP*NTP
=P*NP*ETP
=P*TP*ENP
=EN*ET*EP
=EN*NT*NP
=EN*ENT*ENP
=ET*NT*TP
=ET*ENT*ETP
=EP*NP*TP
=EP*ENP*ETP
=NT*ENT*NTP
=NP*ENP*NTP
=TP*ETP*NTP

Type Relations:
=E*N*T*P
=E*N*ET*EP
=E*N*NT*NP
=E*N*ENT*ENP
=E*T*EN*EP
=E*T*NT*TP
=E*T*ENT*ETP
=E*P*EN*ET
=E*P*NP*TP
=E*P*ENP*ETP
=E*EN*NT*ENP
=E*EN*NP*ENT
=E*ET*NT*ETP
=E*ET*TP*ENT
=E*EP*NP*ETP
=E*EP*TP*ENP
=N*T*EN*NP
=N*T*ET*TP
=N*T*ENT*NTP
=N*P*EN*NT
=N*P*EP*TP
=N*P*ENP*NTP
=N*EN*ET*ENP
=N*EN*EP*ENT
=N*ET*NT*NTP
=N*EP*NP*NTP
=N*NT*TP*ENT
=N*NP*TP*ENP
=T*P*ET*NT
=T*P*EP*NP
=T*P*ETP*NTP
=T*EN*ET*ETP
=T*EN*NT*NTP
=T*ET*EP*ENT
=T*EP*TP*NTP
=T*NT*NP*ENT
=T*NP*TP*ETP
=P*EN*EP*ETP
=P*EN*NP*NTP
=P*ET*EP*ENP
=P*ET*TP*NTP
=P*NT*NP*ENP
=P*NT*TP*ETP
=EN*ET*ENT*NTP
=EN*EP*ENP*NTP
=EN*NT*ENT*ETP
=EN*NP*ENP*ETP
=ET*EP*ETP*NTP
=ET*NT*ENT*ENP
=ET*TP*ENP*ETP
=EP*NP*ENT*ENP
=EP*TP*ENT*ETP
=NT*NP*ETP*NTP
=NT*TP*ENP*NTP
=NP*TP*ENT*NTP
=ENT*ENP*ETP*NTP
Now I just have to figure out how to factor in information metabolism and the higher order objects, like small groups, dyads and types. I might also want to put things in both positive and negative terms, like someone who is and introvert necessarily is not and extrovert.

3. Right
Click
​..+
Loop
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.
.

Page 2 of 2 First 12