Page 2 of 2 FirstFirst 12
Results 41 to 43 of 43

Thread: A new Perspective on Dichotomies in Socionics - Pyramid Diagrams, Draft

  1. #41
    sindri's Avatar
    Join Date
    Jan 2013
    TIM
    IEI
    Posts
    200
    Mentioned
    23 Post(s)
    Tagged
    0 Thread(s)

    Default

    Dichotomy Breakdown of IEI

    IEI dichotomy breakdown.jpg
    Last edited by sindri; 10-23-2017 at 09:55 PM.

  2. #42
    sindri's Avatar
    Join Date
    Jan 2013
    TIM
    IEI
    Posts
    200
    Mentioned
    23 Post(s)
    Tagged
    0 Thread(s)

    Lightbulb Error correction on all structural levels

    I had a Eureka moment and realized I could do the same analysis I've been doing with the small groups on the dyad and type level. I didn't want to have to figure out all of those equations, so I wrote a program to do it for me \(^u^)/

    This is written in Python, which you can run in browser [link]. Otherwise, here is the code
    #Harmony Calculation for dichotomy level reinin structures


    #Cell Index for excel
    #Input needs to be in a single column, in the order:
    #E, N, T, P, EN, ET, EP, NT, NP, TP, ENT, ENP, ETP, NTP, ENTP


    #Starting at cell F2 for dichotomy E
    startColumn = 'F'
    startRow = 2


    #Assign variables to excel input cells, in vector numerical order
    P= startColumn+str(startRow+ 3) #0001
    T= startColumn+str(startRow+ 2) #0010
    TP= startColumn+str(startRow+ 9) #0011
    N= startColumn+str(startRow+ 1) #0100
    NP= startColumn+str(startRow+ 8) #0101
    NT= startColumn+str(startRow+ 7) #0110
    NTP= startColumn+str(startRow+13) #0111
    E= startColumn+str(startRow+ 0) #1000
    EP= startColumn+str(startRow+ 6) #1001
    ET= startColumn+str(startRow+ 5) #1010
    ETP= startColumn+str(startRow+12) #1011
    EN= startColumn+str(startRow+ 4) #1100
    ENP= startColumn+str(startRow+11) #1101
    ENT= startColumn+str(startRow+10) #1110
    ENTP=startColumn+str(startRow+14) #1111


    #Dichotomy vectors put in list in numerical order
    cellList = ['IDENTITY',P,T,TP,N,NP,NT,NTP,E,EP,ET,ETP,EN,ENP,E NT,ENTP]


    #Dichotomy variable from index number
    nameList = ['IDENTITY','P','T','TP','N','NP','NT','NTP','E','E P','ET','ETP','EN','ENP','ENT','ENTP']


    #List Index
    list1= [''] #0000
    listP= [''] #0001
    listT= [''] #0010
    listTP= [''] #0011
    listN= [''] #0100
    listNP= [''] #0101
    listNT= [''] #0110
    listNTP= [''] #0111
    listE= [''] #1000
    listEP= [''] #1001
    listET= [''] #1010
    listETP= [''] #1011
    listEN= [''] #1100
    listENP= [''] #1101
    listENT= [''] #1110
    listENTP= [''] #1111


    listList =
    [list1,listP,listT,listTP,listN,listNP,listNT,listN TP,listE,listEP,listET,listETP,listEN,listENP,list ENT,listENTP]


    #FUNCTIONS
    #Print list items with line space at end
    def printList(arg1):
    i = 0
    loop=len(arg1)
    while (i < loop):
    print(arg1[i])
    i = i + 1
    print ("")


    #Add new item to bottom of list
    def addLast(item,list):
    list.insert(len(list),item)


    #vector addition for two dichotomy vectors strings
    def vectorAdd (v1,v2):
    v1=str(v1)
    v2=str(v2)
    a=( int(v1[0]) + int(v2[0]) )%2 #Mod 2 addition, 1+0=1 1+1=0
    b=( int(v1[1]) + int(v2[1]) )%2
    c=( int(v1[2]) + int(v2[2]) )%2
    d=( int(v1[3]) + int(v2[3]) )%2
    v3=str(a)+str(b)+str(c)+str(d) #Recontructs output vector string
    return(v3)


    #Converts boolean vector to decimal equivelent to use with list indexing
    def vectorToInt (vector):
    vector=str(vector)
    a=int(vector[0])*8+int(vector[1])*4+int(vector[2])*2+int(vector[3])
    return a


    #Converts a number 0-15 into a vector string
    def intToVector (integer):
    integer = ''.join(str(1 & int(integer) >> i) for i in range(4)[::-1])
    return integer


    #Adds two integers as if they were vectors and returns an integer
    def intAdd (int1, int2):
    int1 = intToVector(int1)
    int2 = intToVector(int2)
    int3 = vectorAdd(int1,int2)
    int3 = vectorToInt(int3)
    return int3

    #PROGRAM


    #Small group level constructions, 7 for each dichotomy
    w=1
    while (w<16):
    vw=intToVector(w) #w as a vector
    x=w+1
    while (x<16):
    vx=intToVector(x) #x as a vector
    if vw!=vx:
    formula = '='+cellList[w]+'*'+cellList[x]
    location = listList[vectorToInt(vectorAdd(vw,vx))]
    addLast( formula, location)
    x=x+1
    w=w+1


    #Dyad level constructions, 28 for each dichotomy
    w=1
    while (w<16):
    vw=intToVector(w) #w as a vector
    x=w+1
    while (x<16):
    vx=intToVector(x) #x as a vector
    if w!=x:
    y=x+1
    while (y<16):
    vy=intToVector(y) #y as a vector
    if vectorAdd(vw,vx)!=vy:
    formula = '='+cellList[w]+'*'+cellList[x]+'*'+cellList[y]
    location = listList[vectorToInt(vectorAdd(vectorAdd(vw,vx),vy))]
    addLast( formula, location)
    y=y+1
    x=x+1
    w=w+1


    #Type level constructions, 56 for each dichotomy
    w=1
    while (w<16):
    vw=intToVector(w) #w as a vector
    x=w+1
    while (x<16):
    vx=intToVector(x) #x as a vector
    if w!=x:
    y=x+1
    while (y<16):
    vy=intToVector(y) #y as a vector
    if vectorAdd(vw,vx)!=vy and vw!=vy and vx!=vy:
    z=y+1
    while (z<16):
    vv1=vw
    vv2=vx
    vv3=vy
    vv4=vectorAdd(vw,vx)
    vv5=vectorAdd(vw,vy)
    vv6=vectorAdd(vx,vy)
    vv7=vectorAdd(vectorAdd(vw,vx),vy)
    vz=intToVector(z) #z as a vector
    if (vz!=vv1) and (vz!=vv2) and (vz!=vv3) and (vz!=vv4) and (vz!=vv5) and (vz!=vv6) and (vz!=vv7):
    formula = '='+cellList[w]+'*'+cellList[x]+'*'+cellList[y]+'*'+cellList[z]
    location = listList[vectorToInt(vectorAdd(vectorAdd(vectorAdd(vw,vx),v y),vz))]
    addLast( formula, location)
    z=z+1
    y=y+1
    x=x+1
    w=w+1

    #PRINT RESULTS
    #In vector numerical order, to be copied into Excel
    i=1
    while i<16:
    vectorNum = i
    print(nameList[vectorNum])
    printList(listList[vectorNum])
    print('--------------------')
    print('')
    i=i+1

    #END PROGRAM
    The program as posted is set to output excel cells for my dichotomy calculator. Changing a few things around [link], this is the output in Reinin notation:


    E
    Small Group Relations:
    =N*EN
    =T*ET
    =P*EP
    =NT*ENT
    =NP*ENP
    =TP*ETP
    =NTP*ENTP


    Dyad Relations:
    =N*T*ENT
    =N*P*ENP
    =N*ET*NT
    =N*EP*NP
    =N*TP*ENTP
    =N*ETP*NTP
    =T*P*ETP
    =T*EN*NT
    =T*EP*TP
    =T*NP*ENTP
    =T*ENP*NTP
    =P*EN*NP
    =P*ET*TP
    =P*NT*ENTP
    =P*ENT*NTP
    =EN*ET*ENT
    =EN*EP*ENP
    =EN*TP*NTP
    =EN*ETP*ENTP
    =ET*EP*ETP
    =ET*NP*NTP
    =ET*ENP*ENTP
    =EP*NT*NTP
    =EP*ENT*ENTP
    =NT*NP*ETP
    =NT*TP*ENP
    =NP*TP*ENT
    =ENT*ENP*ETP


    Type Relations:
    =N*T*P*ENTP
    =N*T*EP*NTP
    =N*T*NP*ETP
    =N*T*TP*ENP
    =N*P*ET*NTP
    =N*P*NT*ETP
    =N*P*TP*ENT
    =N*ET*EP*ENTP
    =N*ET*NP*TP
    =N*ET*ENP*ETP
    =N*EP*NT*TP
    =N*EP*ENT*ETP
    =N*NT*NP*ENTP
    =N*NT*ENP*NTP
    =N*NP*ENT*NTP
    =N*ENT*ENP*ENTP
    =T*P*EN*NTP
    =T*P*NT*ENP
    =T*P*NP*ENT
    =T*EN*EP*ENTP
    =T*EN*NP*TP
    =T*EN*ENP*ETP
    =T*EP*NT*NP
    =T*EP*ENT*ENP
    =T*NT*TP*ENTP
    =T*NT*ETP*NTP
    =T*TP*ENT*NTP
    =T*ENT*ETP*ENTP
    =P*EN*ET*ENTP
    =P*EN*NT*TP
    =P*EN*ENT*ETP
    =P*ET*NT*NP
    =P*ET*ENT*ENP
    =P*NP*TP*ENTP
    =P*NP*ETP*NTP
    =P*TP*ENP*NTP
    =P*ENP*ETP*ENTP
    =EN*ET*EP*NTP
    =EN*ET*NP*ETP
    =EN*ET*TP*ENP
    =EN*EP*NT*ETP
    =EN*EP*TP*ENT
    =EN*NT*NP*NTP
    =EN*NT*ENP*ENTP
    =EN*NP*ENT*ENTP
    =EN*ENT*ENP*NTP
    =ET*EP*NT*ENP
    =ET*EP*NP*ENT
    =ET*NT*TP*NTP
    =ET*NT*ETP*ENTP
    =ET*TP*ENT*ENTP
    =ET*ENT*ETP*NTP
    =EP*NP*TP*NTP
    =EP*NP*ETP*ENTP
    =EP*TP*ENP*ENTP
    =EP*ENP*ETP*NTP

    N
    Small Group Relations:
    =E*EN
    =T*NT
    =P*NP
    =ET*ENT
    =EP*ENP
    =TP*NTP
    =ETP*ENTP


    Dyad Relations:
    =E*T*ENT
    =E*P*ENP
    =E*ET*NT
    =E*EP*NP
    =E*TP*ENTP
    =E*ETP*NTP
    =T*P*NTP
    =T*EN*ET
    =T*EP*ENTP
    =T*NP*TP
    =T*ENP*ETP
    =P*EN*EP
    =P*ET*ENTP
    =P*NT*TP
    =P*ENT*ETP
    =EN*NT*ENT
    =EN*NP*ENP
    =EN*TP*ETP
    =EN*NTP*ENTP
    =ET*EP*NTP
    =ET*NP*ETP
    =ET*TP*ENP
    =EP*NT*ETP
    =EP*TP*ENT
    =NT*NP*NTP
    =NT*ENP*ENTP
    =NP*ENT*ENTP
    =ENT*ENP*NTP


    Type Relations:
    =E*T*P*ENTP
    =E*T*EP*NTP
    =E*T*NP*ETP
    =E*T*TP*ENP
    =E*P*ET*NTP
    =E*P*NT*ETP
    =E*P*TP*ENT
    =E*ET*EP*ENTP
    =E*ET*NP*TP
    =E*ET*ENP*ETP
    =E*EP*NT*TP
    =E*EP*ENT*ETP
    =E*NT*NP*ENTP
    =E*NT*ENP*NTP
    =E*NP*ENT*NTP
    =E*ENT*ENP*ENTP
    =T*P*EN*ETP
    =T*P*ET*ENP
    =T*P*EP*ENT
    =T*EN*EP*TP
    =T*EN*NP*ENTP
    =T*EN*ENP*NTP
    =T*ET*EP*NP
    =T*ET*TP*ENTP
    =T*ET*ETP*NTP
    =T*NP*ENT*ENP
    =T*TP*ENT*ETP
    =T*ENT*NTP*ENTP
    =P*EN*ET*TP
    =P*EN*NT*ENTP
    =P*EN*ENT*NTP
    =P*ET*EP*NT
    =P*EP*TP*ENTP
    =P*EP*ETP*NTP
    =P*NT*ENT*ENP
    =P*TP*ENP*ETP
    =P*ENP*NTP*ENTP
    =EN*ET*EP*ETP
    =EN*ET*NP*NTP
    =EN*ET*ENP*ENTP
    =EN*EP*NT*NTP
    =EN*EP*ENT*ENTP
    =EN*NT*NP*ETP
    =EN*NT*TP*ENP
    =EN*NP*TP*ENT
    =EN*ENT*ENP*ETP
    =ET*NT*NP*ENP
    =ET*NT*TP*ETP
    =ET*NT*NTP*ENTP
    =EP*NT*NP*ENT
    =EP*NP*TP*ETP
    =EP*NP*NTP*ENTP
    =NT*TP*ENT*ENTP
    =NT*ENT*ETP*NTP
    =NP*TP*ENP*ENTP
    =NP*ENP*ETP*NTP

    T
    Small Group Relations:
    =E*ET
    =N*NT
    =P*TP
    =EN*ENT
    =EP*ETP
    =NP*NTP
    =ENP*ENTP


    Dyad Relations:
    =E*N*ENT
    =E*P*ETP
    =E*EN*NT
    =E*EP*TP
    =E*NP*ENTP
    =E*ENP*NTP
    =N*P*NTP
    =N*EN*ET
    =N*EP*ENTP
    =N*NP*TP
    =N*ENP*ETP
    =P*EN*ENTP
    =P*ET*EP
    =P*NT*NP
    =P*ENT*ENP
    =EN*EP*NTP
    =EN*NP*ETP
    =EN*TP*ENP
    =ET*NT*ENT
    =ET*NP*ENP
    =ET*TP*ETP
    =ET*NTP*ENTP
    =EP*NT*ENP
    =EP*NP*ENT
    =NT*TP*NTP
    =NT*ETP*ENTP
    =TP*ENT*ENTP
    =ENT*ETP*NTP


    Type Relations:
    =E*N*P*ENTP
    =E*N*EP*NTP
    =E*N*NP*ETP
    =E*N*TP*ENP
    =E*P*EN*NTP
    =E*P*NT*ENP
    =E*P*NP*ENT
    =E*EN*EP*ENTP
    =E*EN*NP*TP
    =E*EN*ENP*ETP
    =E*EP*NT*NP
    =E*EP*ENT*ENP
    =E*NT*TP*ENTP
    =E*NT*ETP*NTP
    =E*TP*ENT*NTP
    =E*ENT*ETP*ENTP
    =N*P*EN*ETP
    =N*P*ET*ENP
    =N*P*EP*ENT
    =N*EN*EP*TP
    =N*EN*NP*ENTP
    =N*EN*ENP*NTP
    =N*ET*EP*NP
    =N*ET*TP*ENTP
    =N*ET*ETP*NTP
    =N*NP*ENT*ENP
    =N*TP*ENT*ETP
    =N*ENT*NTP*ENTP
    =P*EN*ET*NP
    =P*EN*EP*NT
    =P*ET*NT*ENTP
    =P*ET*ENT*NTP
    =P*EP*NP*ENTP
    =P*EP*ENP*NTP
    =P*NT*ENT*ETP
    =P*NP*ENP*ETP
    =P*ETP*NTP*ENTP
    =EN*ET*EP*ENP
    =EN*ET*TP*NTP
    =EN*ET*ETP*ENTP
    =EN*NT*NP*ENP
    =EN*NT*TP*ETP
    =EN*NT*NTP*ENTP
    =ET*EP*NT*NTP
    =ET*EP*ENT*ENTP
    =ET*NT*NP*ETP
    =ET*NT*TP*ENP
    =ET*NP*TP*ENT
    =ET*ENT*ENP*ETP
    =EP*NT*TP*ENT
    =EP*NP*TP*ENP
    =EP*TP*NTP*ENTP
    =NT*NP*ENT*ENTP
    =NT*ENT*ENP*NTP
    =NP*TP*ETP*ENTP
    =TP*ENP*ETP*NTP

    P
    Small Group Relations:
    =E*EP
    =N*NP
    =T*TP
    =EN*ENP
    =ET*ETP
    =NT*NTP
    =ENT*ENTP


    Dyad Relations:
    =E*N*ENP
    =E*T*ETP
    =E*EN*NP
    =E*ET*TP
    =E*NT*ENTP
    =E*ENT*NTP
    =N*T*NTP
    =N*EN*EP
    =N*ET*ENTP
    =N*NT*TP
    =N*ENT*ETP
    =T*EN*ENTP
    =T*ET*EP
    =T*NT*NP
    =T*ENT*ENP
    =EN*ET*NTP
    =EN*NT*ETP
    =EN*TP*ENT
    =ET*NT*ENP
    =ET*NP*ENT
    =EP*NT*ENT
    =EP*NP*ENP
    =EP*TP*ETP
    =EP*NTP*ENTP
    =NP*TP*NTP
    =NP*ETP*ENTP
    =TP*ENP*ENTP
    =ENP*ETP*NTP


    Type Relations:
    =E*N*T*ENTP
    =E*N*ET*NTP
    =E*N*NT*ETP
    =E*N*TP*ENT
    =E*T*EN*NTP
    =E*T*NT*ENP
    =E*T*NP*ENT
    =E*EN*ET*ENTP
    =E*EN*NT*TP
    =E*EN*ENT*ETP
    =E*ET*NT*NP
    =E*ET*ENT*ENP
    =E*NP*TP*ENTP
    =E*NP*ETP*NTP
    =E*TP*ENP*NTP
    =E*ENP*ETP*ENTP
    =N*T*EN*ETP
    =N*T*ET*ENP
    =N*T*EP*ENT
    =N*EN*ET*TP
    =N*EN*NT*ENTP
    =N*EN*ENT*NTP
    =N*ET*EP*NT
    =N*EP*TP*ENTP
    =N*EP*ETP*NTP
    =N*NT*ENT*ENP
    =N*TP*ENP*ETP
    =N*ENP*NTP*ENTP
    =T*EN*ET*NP
    =T*EN*EP*NT
    =T*ET*NT*ENTP
    =T*ET*ENT*NTP
    =T*EP*NP*ENTP
    =T*EP*ENP*NTP
    =T*NT*ENT*ETP
    =T*NP*ENP*ETP
    =T*ETP*NTP*ENTP
    =EN*ET*EP*ENT
    =EN*EP*TP*NTP
    =EN*EP*ETP*ENTP
    =EN*NT*NP*ENT
    =EN*NP*TP*ETP
    =EN*NP*NTP*ENTP
    =ET*EP*NP*NTP
    =ET*EP*ENP*ENTP
    =ET*NT*TP*ENT
    =ET*NP*TP*ENP
    =ET*TP*NTP*ENTP
    =EP*NT*NP*ETP
    =EP*NT*TP*ENP
    =EP*NP*TP*ENT
    =EP*ENT*ENP*ETP
    =NT*NP*ENP*ENTP
    =NT*TP*ETP*ENTP
    =NP*ENT*ENP*NTP
    =TP*ENT*ETP*NTP

    EN
    Small Group Relations:
    =E*N
    =T*ENT
    =P*ENP
    =ET*NT
    =EP*NP
    =TP*ENTP
    =ETP*NTP


    Dyad Relations:
    =E*T*NT
    =E*P*NP
    =E*ET*ENT
    =E*EP*ENP
    =E*TP*NTP
    =E*ETP*ENTP
    =N*T*ET
    =N*P*EP
    =N*NT*ENT
    =N*NP*ENP
    =N*TP*ETP
    =N*NTP*ENTP
    =T*P*ENTP
    =T*EP*NTP
    =T*NP*ETP
    =T*TP*ENP
    =P*ET*NTP
    =P*NT*ETP
    =P*TP*ENT
    =ET*EP*ENTP
    =ET*NP*TP
    =ET*ENP*ETP
    =EP*NT*TP
    =EP*ENT*ETP
    =NT*NP*ENTP
    =NT*ENP*NTP
    =NP*ENT*NTP
    =ENT*ENP*ENTP


    Type Relations:
    =E*T*P*NTP
    =E*T*EP*ENTP
    =E*T*NP*TP
    =E*T*ENP*ETP
    =E*P*ET*ENTP
    =E*P*NT*TP
    =E*P*ENT*ETP
    =E*ET*EP*NTP
    =E*ET*NP*ETP
    =E*ET*TP*ENP
    =E*EP*NT*ETP
    =E*EP*TP*ENT
    =E*NT*NP*NTP
    =E*NT*ENP*ENTP
    =E*NP*ENT*ENTP
    =E*ENT*ENP*NTP
    =N*T*P*ETP
    =N*T*EP*TP
    =N*T*NP*ENTP
    =N*T*ENP*NTP
    =N*P*ET*TP
    =N*P*NT*ENTP
    =N*P*ENT*NTP
    =N*ET*EP*ETP
    =N*ET*NP*NTP
    =N*ET*ENP*ENTP
    =N*EP*NT*NTP
    =N*EP*ENT*ENTP
    =N*NT*NP*ETP
    =N*NT*TP*ENP
    =N*NP*TP*ENT
    =N*ENT*ENP*ETP
    =T*P*ET*NP
    =T*P*EP*NT
    =T*ET*EP*ENP
    =T*ET*TP*NTP
    =T*ET*ETP*ENTP
    =T*NT*NP*ENP
    =T*NT*TP*ETP
    =T*NT*NTP*ENTP
    =P*ET*EP*ENT
    =P*EP*TP*NTP
    =P*EP*ETP*ENTP
    =P*NT*NP*ENT
    =P*NP*TP*ETP
    =P*NP*NTP*ENTP
    =ET*NP*ENT*ENP
    =ET*TP*ENT*ETP
    =ET*ENT*NTP*ENTP
    =EP*NT*ENT*ENP
    =EP*TP*ENP*ETP
    =EP*ENP*NTP*ENTP
    =NT*TP*ENT*NTP
    =NT*ENT*ETP*ENTP
    =NP*TP*ENP*NTP
    =NP*ENP*ETP*ENTP

    ET
    Small Group Relations:
    =E*T
    =N*ENT
    =P*ETP
    =EN*NT
    =EP*TP
    =NP*ENTP
    =ENP*NTP


    Dyad Relations:
    =E*N*NT
    =E*P*TP
    =E*EN*ENT
    =E*EP*ETP
    =E*NP*NTP
    =E*ENP*ENTP
    =N*T*EN
    =N*P*ENTP
    =N*EP*NTP
    =N*NP*ETP
    =N*TP*ENP
    =T*P*EP
    =T*NT*ENT
    =T*NP*ENP
    =T*TP*ETP
    =T*NTP*ENTP
    =P*EN*NTP
    =P*NT*ENP
    =P*NP*ENT
    =EN*EP*ENTP
    =EN*NP*TP
    =EN*ENP*ETP
    =EP*NT*NP
    =EP*ENT*ENP
    =NT*TP*ENTP
    =NT*ETP*NTP
    =TP*ENT*NTP
    =ENT*ETP*ENTP


    Type Relations:
    =E*N*P*NTP
    =E*N*EP*ENTP
    =E*N*NP*TP
    =E*N*ENP*ETP
    =E*P*EN*ENTP
    =E*P*NT*NP
    =E*P*ENT*ENP
    =E*EN*EP*NTP
    =E*EN*NP*ETP
    =E*EN*TP*ENP
    =E*EP*NT*ENP
    =E*EP*NP*ENT
    =E*NT*TP*NTP
    =E*NT*ETP*ENTP
    =E*TP*ENT*ENTP
    =E*ENT*ETP*NTP
    =N*T*P*ENP
    =N*T*EP*NP
    =N*T*TP*ENTP
    =N*T*ETP*NTP
    =N*P*EN*TP
    =N*P*EP*NT
    =N*EN*EP*ETP
    =N*EN*NP*NTP
    =N*EN*ENP*ENTP
    =N*NT*NP*ENP
    =N*NT*TP*ETP
    =N*NT*NTP*ENTP
    =T*P*EN*NP
    =T*P*NT*ENTP
    =T*P*ENT*NTP
    =T*EN*EP*ENP
    =T*EN*TP*NTP
    =T*EN*ETP*ENTP
    =T*EP*NT*NTP
    =T*EP*ENT*ENTP
    =T*NT*NP*ETP
    =T*NT*TP*ENP
    =T*NP*TP*ENT
    =T*ENT*ENP*ETP
    =P*EN*EP*ENT
    =P*EP*NP*NTP
    =P*EP*ENP*ENTP
    =P*NT*TP*ENT
    =P*NP*TP*ENP
    =P*TP*NTP*ENTP
    =EN*NP*ENT*ENP
    =EN*TP*ENT*ETP
    =EN*ENT*NTP*ENTP
    =EP*NT*ENT*ETP
    =EP*NP*ENP*ETP
    =EP*ETP*NTP*ENTP
    =NT*NP*ENT*NTP
    =NT*ENT*ENP*ENTP
    =NP*TP*ETP*NTP
    =TP*ENP*ETP*ENTP

    EP
    Small Group Relations:
    =E*P
    =N*ENP
    =T*ETP
    =EN*NP
    =ET*TP
    =NT*ENTP
    =ENT*NTP


    Dyad Relations:
    =E*N*NP
    =E*T*TP
    =E*EN*ENP
    =E*ET*ETP
    =E*NT*NTP
    =E*ENT*ENTP
    =N*T*ENTP
    =N*P*EN
    =N*ET*NTP
    =N*NT*ETP
    =N*TP*ENT
    =T*P*ET
    =T*EN*NTP
    =T*NT*ENP
    =T*NP*ENT
    =P*NT*ENT
    =P*NP*ENP
    =P*TP*ETP
    =P*NTP*ENTP
    =EN*ET*ENTP
    =EN*NT*TP
    =EN*ENT*ETP
    =ET*NT*NP
    =ET*ENT*ENP
    =NP*TP*ENTP
    =NP*ETP*NTP
    =TP*ENP*NTP
    =ENP*ETP*ENTP


    Type Relations:
    =E*N*T*NTP
    =E*N*ET*ENTP
    =E*N*NT*TP
    =E*N*ENT*ETP
    =E*T*EN*ENTP
    =E*T*NT*NP
    =E*T*ENT*ENP
    =E*EN*ET*NTP
    =E*EN*NT*ETP
    =E*EN*TP*ENT
    =E*ET*NT*ENP
    =E*ET*NP*ENT
    =E*NP*TP*NTP
    =E*NP*ETP*ENTP
    =E*TP*ENP*ENTP
    =E*ENP*ETP*NTP
    =N*T*P*ENT
    =N*T*EN*TP
    =N*T*ET*NP
    =N*P*ET*NT
    =N*P*TP*ENTP
    =N*P*ETP*NTP
    =N*EN*ET*ETP
    =N*EN*NT*NTP
    =N*EN*ENT*ENTP
    =N*NT*NP*ENT
    =N*NP*TP*ETP
    =N*NP*NTP*ENTP
    =T*P*EN*NT
    =T*P*NP*ENTP
    =T*P*ENP*NTP
    =T*EN*ET*ENP
    =T*ET*NT*NTP
    =T*ET*ENT*ENTP
    =T*NT*TP*ENT
    =T*NP*TP*ENP
    =T*TP*NTP*ENTP
    =P*EN*ET*ENT
    =P*EN*TP*NTP
    =P*EN*ETP*ENTP
    =P*ET*NP*NTP
    =P*ET*ENP*ENTP
    =P*NT*NP*ETP
    =P*NT*TP*ENP
    =P*NP*TP*ENT
    =P*ENT*ENP*ETP
    =EN*NT*ENT*ENP
    =EN*TP*ENP*ETP
    =EN*ENP*NTP*ENTP
    =ET*NT*ENT*ETP
    =ET*NP*ENP*ETP
    =ET*ETP*NTP*ENTP
    =NT*NP*ENP*NTP
    =NT*TP*ETP*NTP
    =NP*ENT*ENP*ENTP
    =TP*ENT*ETP*ENTP

    NT
    Small Group Relations:
    =E*ENT
    =N*T
    =P*NTP
    =EN*ET
    =EP*ENTP
    =NP*TP
    =ENP*ETP


    Dyad Relations:
    =E*N*ET
    =E*T*EN
    =E*P*ENTP
    =E*EP*NTP
    =E*NP*ETP
    =E*TP*ENP
    =N*P*TP
    =N*EN*ENT
    =N*EP*ETP
    =N*NP*NTP
    =N*ENP*ENTP
    =T*P*NP
    =T*ET*ENT
    =T*EP*ENP
    =T*TP*NTP
    =T*ETP*ENTP
    =P*EN*ETP
    =P*ET*ENP
    =P*EP*ENT
    =EN*EP*TP
    =EN*NP*ENTP
    =EN*ENP*NTP
    =ET*EP*NP
    =ET*TP*ENTP
    =ET*ETP*NTP
    =NP*ENT*ENP
    =TP*ENT*ETP
    =ENT*NTP*ENTP


    Type Relations:
    =E*N*P*ETP
    =E*N*EP*TP
    =E*N*NP*ENTP
    =E*N*ENP*NTP
    =E*T*P*ENP
    =E*T*EP*NP
    =E*T*TP*ENTP
    =E*T*ETP*NTP
    =E*P*EN*TP
    =E*P*ET*NP
    =E*EN*EP*ETP
    =E*EN*NP*NTP
    =E*EN*ENP*ENTP
    =E*ET*EP*ENP
    =E*ET*TP*NTP
    =E*ET*ETP*ENTP
    =N*P*EN*ENTP
    =N*P*ET*EP
    =N*P*ENT*ENP
    =N*EN*EP*NTP
    =N*EN*NP*ETP
    =N*EN*TP*ENP
    =N*ET*NP*ENP
    =N*ET*TP*ETP
    =N*ET*NTP*ENTP
    =N*EP*NP*ENT
    =N*TP*ENT*ENTP
    =N*ENT*ETP*NTP
    =T*P*EN*EP
    =T*P*ET*ENTP
    =T*P*ENT*ETP
    =T*EN*NP*ENP
    =T*EN*TP*ETP
    =T*EN*NTP*ENTP
    =T*ET*EP*NTP
    =T*ET*NP*ETP
    =T*ET*TP*ENP
    =T*EP*TP*ENT
    =T*NP*ENT*ENTP
    =T*ENT*ENP*NTP
    =P*EN*NP*ENT
    =P*ET*TP*ENT
    =P*EP*NP*ETP
    =P*EP*TP*ENP
    =P*NP*ENP*ENTP
    =P*TP*ETP*ENTP
    =EN*EP*ENT*ENP
    =EN*TP*ENT*NTP
    =EN*ENT*ETP*ENTP
    =ET*EP*ENT*ETP
    =ET*NP*ENT*NTP
    =ET*ENT*ENP*ENTP
    =EP*NP*ENP*NTP
    =EP*TP*ETP*NTP
    =NP*ETP*NTP*ENTP
    =TP*ENP*NTP*ENTP

    NP
    Small Group Relations:
    =E*ENP
    =N*P
    =T*NTP
    =EN*EP
    =ET*ENTP
    =NT*TP
    =ENT*ETP


    Dyad Relations:
    =E*N*EP
    =E*T*ENTP
    =E*P*EN
    =E*ET*NTP
    =E*NT*ETP
    =E*TP*ENT
    =N*T*TP
    =N*EN*ENP
    =N*ET*ETP
    =N*NT*NTP
    =N*ENT*ENTP
    =T*P*NT
    =T*EN*ETP
    =T*ET*ENP
    =T*EP*ENT
    =P*ET*ENT
    =P*EP*ENP
    =P*TP*NTP
    =P*ETP*ENTP
    =EN*ET*TP
    =EN*NT*ENTP
    =EN*ENT*NTP
    =ET*EP*NT
    =EP*TP*ENTP
    =EP*ETP*NTP
    =NT*ENT*ENP
    =TP*ENP*ETP
    =ENP*NTP*ENTP


    Type Relations:
    =E*N*T*ETP
    =E*N*ET*TP
    =E*N*NT*ENTP
    =E*N*ENT*NTP
    =E*T*P*ENT
    =E*T*EN*TP
    =E*T*EP*NT
    =E*P*ET*NT
    =E*P*TP*ENTP
    =E*P*ETP*NTP
    =E*EN*ET*ETP
    =E*EN*NT*NTP
    =E*EN*ENT*ENTP
    =E*ET*EP*ENT
    =E*EP*TP*NTP
    =E*EP*ETP*ENTP
    =N*T*EN*ENTP
    =N*T*ET*EP
    =N*T*ENT*ENP
    =N*EN*ET*NTP
    =N*EN*NT*ETP
    =N*EN*TP*ENT
    =N*ET*NT*ENP
    =N*EP*NT*ENT
    =N*EP*TP*ETP
    =N*EP*NTP*ENTP
    =N*TP*ENP*ENTP
    =N*ENP*ETP*NTP
    =T*P*EN*ET
    =T*P*EP*ENTP
    =T*P*ENP*ETP
    =T*EN*NT*ENP
    =T*ET*NT*ETP
    =T*ET*TP*ENT
    =T*EP*TP*ENP
    =T*NT*ENT*ENTP
    =T*TP*ETP*ENTP
    =P*EN*NT*ENT
    =P*EN*TP*ETP
    =P*EN*NTP*ENTP
    =P*ET*EP*NTP
    =P*ET*TP*ENP
    =P*EP*NT*ETP
    =P*EP*TP*ENT
    =P*NT*ENP*ENTP
    =P*ENT*ENP*NTP
    =EN*ET*ENT*ENP
    =EN*TP*ENP*NTP
    =EN*ENP*ETP*ENTP
    =ET*EP*ENP*ETP
    =ET*NT*ENT*NTP
    =ET*TP*ETP*NTP
    =EP*NT*ENP*NTP
    =EP*ENT*ENP*ENTP
    =NT*ETP*NTP*ENTP
    =TP*ENT*NTP*ENTP

    TP
    Small Group Relations:
    =E*ETP
    =N*NTP
    =T*P
    =EN*ENTP
    =ET*EP
    =NT*NP
    =ENT*ENP


    Dyad Relations:
    =E*N*ENTP
    =E*T*EP
    =E*P*ET
    =E*EN*NTP
    =E*NT*ENP
    =E*NP*ENT
    =N*T*NP
    =N*P*NT
    =N*EN*ETP
    =N*ET*ENP
    =N*EP*ENT
    =T*EN*ENP
    =T*ET*ETP
    =T*NT*NTP
    =T*ENT*ENTP
    =P*EN*ENT
    =P*EP*ETP
    =P*NP*NTP
    =P*ENP*ENTP
    =EN*ET*NP
    =EN*EP*NT
    =ET*NT*ENTP
    =ET*ENT*NTP
    =EP*NP*ENTP
    =EP*ENP*NTP
    =NT*ENT*ETP
    =NP*ENP*ETP
    =ETP*NTP*ENTP


    Type Relations:
    =E*N*T*ENP
    =E*N*P*ENT
    =E*N*ET*NP
    =E*N*EP*NT
    =E*T*EN*NP
    =E*T*NT*ENTP
    =E*T*ENT*NTP
    =E*P*EN*NT
    =E*P*NP*ENTP
    =E*P*ENP*NTP
    =E*EN*ET*ENP
    =E*EN*EP*ENT
    =E*ET*NT*NTP
    =E*ET*ENT*ENTP
    =E*EP*NP*NTP
    =E*EP*ENP*ENTP
    =N*T*EN*EP
    =N*T*ET*ENTP
    =N*T*ENT*ETP
    =N*P*EN*ET
    =N*P*EP*ENTP
    =N*P*ENP*ETP
    =N*EN*NT*ENP
    =N*EN*NP*ENT
    =N*ET*NT*ETP
    =N*EP*NP*ETP
    =N*NT*ENT*ENTP
    =N*NP*ENP*ENTP
    =T*EN*ET*NTP
    =T*EN*NT*ETP
    =T*ET*NT*ENP
    =T*ET*NP*ENT
    =T*EP*NT*ENT
    =T*EP*NP*ENP
    =T*EP*NTP*ENTP
    =T*NP*ETP*ENTP
    =T*ENP*ETP*NTP
    =P*EN*EP*NTP
    =P*EN*NP*ETP
    =P*ET*NT*ENT
    =P*ET*NP*ENP
    =P*ET*NTP*ENTP
    =P*EP*NT*ENP
    =P*EP*NP*ENT
    =P*NT*ETP*ENTP
    =P*ENT*ETP*NTP
    =EN*ET*ENT*ETP
    =EN*EP*ENP*ETP
    =EN*NT*ENT*NTP
    =EN*NP*ENP*NTP
    =ET*NP*ETP*NTP
    =ET*ENP*ETP*ENTP
    =EP*NT*ETP*NTP
    =EP*ENT*ETP*ENTP
    =NT*ENP*NTP*ENTP
    =NP*ENT*NTP*ENTP

    ENT
    Small Group Relations:
    =E*NT
    =N*ET
    =T*EN
    =P*ENTP
    =EP*NTP
    =NP*ETP
    =TP*ENP


    Dyad Relations:
    =E*N*T
    =E*P*NTP
    =E*EN*ET
    =E*EP*ENTP
    =E*NP*TP
    =E*ENP*ETP
    =N*P*ETP
    =N*EN*NT
    =N*EP*TP
    =N*NP*ENTP
    =N*ENP*NTP
    =T*P*ENP
    =T*ET*NT
    =T*EP*NP
    =T*TP*ENTP
    =T*ETP*NTP
    =P*EN*TP
    =P*ET*NP
    =P*EP*NT
    =EN*EP*ETP
    =EN*NP*NTP
    =EN*ENP*ENTP
    =ET*EP*ENP
    =ET*TP*NTP
    =ET*ETP*ENTP
    =NT*NP*ENP
    =NT*TP*ETP
    =NT*NTP*ENTP


    Type Relations:
    =E*N*P*TP
    =E*N*EP*ETP
    =E*N*NP*NTP
    =E*N*ENP*ENTP
    =E*T*P*NP
    =E*T*EP*ENP
    =E*T*TP*NTP
    =E*T*ETP*ENTP
    =E*P*EN*ETP
    =E*P*ET*ENP
    =E*EN*EP*TP
    =E*EN*NP*ENTP
    =E*EN*ENP*NTP
    =E*ET*EP*NP
    =E*ET*TP*ENTP
    =E*ET*ETP*NTP
    =N*T*P*EP
    =N*T*NP*ENP
    =N*T*TP*ETP
    =N*T*NTP*ENTP
    =N*P*EN*NTP
    =N*P*NT*ENP
    =N*EN*EP*ENTP
    =N*EN*NP*TP
    =N*EN*ENP*ETP
    =N*EP*NT*NP
    =N*NT*TP*ENTP
    =N*NT*ETP*NTP
    =T*P*ET*NTP
    =T*P*NT*ETP
    =T*ET*EP*ENTP
    =T*ET*NP*TP
    =T*ET*ENP*ETP
    =T*EP*NT*TP
    =T*NT*NP*ENTP
    =T*NT*ENP*NTP
    =P*EN*ET*EP
    =P*EN*NT*NP
    =P*ET*NT*TP
    =P*EP*NP*TP
    =P*EP*ENP*ETP
    =P*NP*ENP*NTP
    =P*TP*ETP*NTP
    =EN*ET*NP*ENP
    =EN*ET*TP*ETP
    =EN*ET*NTP*ENTP
    =EN*EP*NT*ENP
    =EN*NT*TP*NTP
    =EN*NT*ETP*ENTP
    =ET*EP*NT*ETP
    =ET*NT*NP*NTP
    =ET*NT*ENP*ENTP
    =EP*NP*ENP*ENTP
    =EP*TP*ETP*ENTP
    =NP*TP*NTP*ENTP
    =ENP*ETP*NTP*ENTP

    ENP
    Small Group Relations:
    =E*NP
    =N*EP
    =T*ENTP
    =P*EN
    =ET*NTP
    =NT*ETP
    =TP*ENT


    Dyad Relations:
    =E*N*P
    =E*T*NTP
    =E*EN*EP
    =E*ET*ENTP
    =E*NT*TP
    =E*ENT*ETP
    =N*T*ETP
    =N*EN*NP
    =N*ET*TP
    =N*NT*ENTP
    =N*ENT*NTP
    =T*P*ENT
    =T*EN*TP
    =T*ET*NP
    =T*EP*NT
    =P*ET*NT
    =P*EP*NP
    =P*TP*ENTP
    =P*ETP*NTP
    =EN*ET*ETP
    =EN*NT*NTP
    =EN*ENT*ENTP
    =ET*EP*ENT
    =EP*TP*NTP
    =EP*ETP*ENTP
    =NT*NP*ENT
    =NP*TP*ETP
    =NP*NTP*ENTP


    Type Relations:
    =E*N*T*TP
    =E*N*ET*ETP
    =E*N*NT*NTP
    =E*N*ENT*ENTP
    =E*T*P*NT
    =E*T*EN*ETP
    =E*T*EP*ENT
    =E*P*ET*ENT
    =E*P*TP*NTP
    =E*P*ETP*ENTP
    =E*EN*ET*TP
    =E*EN*NT*ENTP
    =E*EN*ENT*NTP
    =E*ET*EP*NT
    =E*EP*TP*ENTP
    =E*EP*ETP*NTP
    =N*T*P*ET
    =N*T*EN*NTP
    =N*T*NP*ENT
    =N*P*NT*ENT
    =N*P*TP*ETP
    =N*P*NTP*ENTP
    =N*EN*ET*ENTP
    =N*EN*NT*TP
    =N*EN*ENT*ETP
    =N*ET*NT*NP
    =N*NP*TP*ENTP
    =N*NP*ETP*NTP
    =T*P*EP*NTP
    =T*P*NP*ETP
    =T*EN*ET*EP
    =T*EN*NT*NP
    =T*ET*NT*TP
    =T*ET*ENT*ETP
    =T*EP*NP*TP
    =T*NT*ENT*NTP
    =T*TP*ETP*NTP
    =P*ET*EP*ENTP
    =P*ET*NP*TP
    =P*EP*NT*TP
    =P*EP*ENT*ETP
    =P*NT*NP*ENTP
    =P*NP*ENT*NTP
    =EN*ET*NP*ENT
    =EN*EP*NT*ENT
    =EN*EP*TP*ETP
    =EN*EP*NTP*ENTP
    =EN*NP*TP*NTP
    =EN*NP*ETP*ENTP
    =ET*EP*NP*ETP
    =ET*NT*ENT*ENTP
    =ET*TP*ETP*ENTP
    =EP*NT*NP*NTP
    =EP*NP*ENT*ENTP
    =NT*TP*NTP*ENTP
    =ENT*ETP*NTP*ENTP

    ETP
    Small Group Relations:
    =E*TP
    =N*ENTP
    =T*EP
    =P*ET
    =EN*NTP
    =NT*ENP
    =NP*ENT


    Dyad Relations:
    =E*N*NTP
    =E*T*P
    =E*EN*ENTP
    =E*ET*EP
    =E*NT*NP
    =E*ENT*ENP
    =N*T*ENP
    =N*P*ENT
    =N*EN*TP
    =N*ET*NP
    =N*EP*NT
    =T*EN*NP
    =T*ET*TP
    =T*NT*ENTP
    =T*ENT*NTP
    =P*EN*NT
    =P*EP*TP
    =P*NP*ENTP
    =P*ENP*NTP
    =EN*ET*ENP
    =EN*EP*ENT
    =ET*NT*NTP
    =ET*ENT*ENTP
    =EP*NP*NTP
    =EP*ENP*ENTP
    =NT*TP*ENT
    =NP*TP*ENP
    =TP*NTP*ENTP


    Type Relations:
    =E*N*T*NP
    =E*N*P*NT
    =E*N*ET*ENP
    =E*N*EP*ENT
    =E*T*EN*ENP
    =E*T*NT*NTP
    =E*T*ENT*ENTP
    =E*P*EN*ENT
    =E*P*NP*NTP
    =E*P*ENP*ENTP
    =E*EN*ET*NP
    =E*EN*EP*NT
    =E*ET*NT*ENTP
    =E*ET*ENT*NTP
    =E*EP*NP*ENTP
    =E*EP*ENP*NTP
    =N*T*P*EN
    =N*T*ET*NTP
    =N*T*TP*ENT
    =N*P*EP*NTP
    =N*P*TP*ENP
    =N*EN*ET*EP
    =N*EN*NT*NP
    =N*EN*ENT*ENP
    =N*ET*NT*TP
    =N*EP*NP*TP
    =N*NT*ENT*NTP
    =N*NP*ENP*NTP
    =T*P*NT*ENT
    =T*P*NP*ENP
    =T*P*NTP*ENTP
    =T*EN*ET*ENTP
    =T*EN*NT*TP
    =T*ET*NT*NP
    =T*ET*ENT*ENP
    =T*NP*TP*ENTP
    =T*TP*ENP*NTP
    =P*EN*EP*ENTP
    =P*EN*NP*TP
    =P*EP*NT*NP
    =P*EP*ENT*ENP
    =P*NT*TP*ENTP
    =P*TP*ENT*NTP
    =EN*ET*TP*ENT
    =EN*EP*TP*ENP
    =EN*NT*ENT*ENTP
    =EN*NP*ENP*ENTP
    =ET*EP*NT*ENT
    =ET*EP*NP*ENP
    =ET*EP*NTP*ENTP
    =ET*NP*TP*NTP
    =ET*TP*ENP*ENTP
    =EP*NT*TP*NTP
    =EP*TP*ENT*ENTP
    =NT*NP*NTP*ENTP
    =ENT*ENP*NTP*ENTP

    NTP
    Small Group Relations:
    =E*ENTP
    =N*TP
    =T*NP
    =P*NT
    =EN*ETP
    =ET*ENP
    =EP*ENT


    Dyad Relations:
    =E*N*ETP
    =E*T*ENP
    =E*P*ENT
    =E*EN*TP
    =E*ET*NP
    =E*EP*NT
    =N*T*P
    =N*EN*ENTP
    =N*ET*EP
    =N*NT*NP
    =N*ENT*ENP
    =T*EN*EP
    =T*ET*ENTP
    =T*NT*TP
    =T*ENT*ETP
    =P*EN*ET
    =P*EP*ENTP
    =P*NP*TP
    =P*ENP*ETP
    =EN*NT*ENP
    =EN*NP*ENT
    =ET*NT*ETP
    =ET*TP*ENT
    =EP*NP*ETP
    =EP*TP*ENP
    =NT*ENT*ENTP
    =NP*ENP*ENTP
    =TP*ETP*ENTP


    Type Relations:
    =E*N*T*EP
    =E*N*P*ET
    =E*N*NT*ENP
    =E*N*NP*ENT
    =E*T*P*EN
    =E*T*NT*ETP
    =E*T*TP*ENT
    =E*P*NP*ETP
    =E*P*TP*ENP
    =E*EN*ET*EP
    =E*EN*NT*NP
    =E*EN*ENT*ENP
    =E*ET*NT*TP
    =E*ET*ENT*ETP
    =E*EP*NP*TP
    =E*EP*ENP*ETP
    =N*T*EN*ENP
    =N*T*ET*ETP
    =N*T*ENT*ENTP
    =N*P*EN*ENT
    =N*P*EP*ETP
    =N*P*ENP*ENTP
    =N*EN*ET*NP
    =N*EN*EP*NT
    =N*ET*NT*ENTP
    =N*EP*NP*ENTP
    =N*NT*ENT*ETP
    =N*NP*ENP*ETP
    =T*P*ET*ENT
    =T*P*EP*ENP
    =T*P*ETP*ENTP
    =T*EN*ET*TP
    =T*EN*NT*ENTP
    =T*ET*EP*NT
    =T*EP*TP*ENTP
    =T*NT*ENT*ENP
    =T*TP*ENP*ETP
    =P*EN*EP*TP
    =P*EN*NP*ENTP
    =P*ET*EP*NP
    =P*ET*TP*ENTP
    =P*NP*ENT*ENP
    =P*TP*ENT*ETP
    =EN*ET*ENT*ENTP
    =EN*EP*ENP*ENTP
    =EN*NT*TP*ENT
    =EN*NP*TP*ENP
    =ET*EP*ETP*ENTP
    =ET*NT*NP*ENT
    =ET*NP*TP*ETP
    =EP*NT*NP*ENP
    =EP*NT*TP*ETP
    =NT*NP*ETP*ENTP
    =NT*TP*ENP*ENTP
    =NP*TP*ENT*ENTP
    =ENT*ENP*ETP*ENTP

    ENTP
    Small Group Relations:
    =E*NTP
    =N*ETP
    =T*ENP
    =P*ENT
    =EN*TP
    =ET*NP
    =EP*NT


    Dyad Relations:
    =E*N*TP
    =E*T*NP
    =E*P*NT
    =E*EN*ETP
    =E*ET*ENP
    =E*EP*ENT
    =N*T*EP
    =N*P*ET
    =N*EN*NTP
    =N*NT*ENP
    =N*NP*ENT
    =T*P*EN
    =T*ET*NTP
    =T*NT*ETP
    =T*TP*ENT
    =P*EP*NTP
    =P*NP*ETP
    =P*TP*ENP
    =EN*ET*EP
    =EN*NT*NP
    =EN*ENT*ENP
    =ET*NT*TP
    =ET*ENT*ETP
    =EP*NP*TP
    =EP*ENP*ETP
    =NT*ENT*NTP
    =NP*ENP*NTP
    =TP*ETP*NTP


    Type Relations:
    =E*N*T*P
    =E*N*ET*EP
    =E*N*NT*NP
    =E*N*ENT*ENP
    =E*T*EN*EP
    =E*T*NT*TP
    =E*T*ENT*ETP
    =E*P*EN*ET
    =E*P*NP*TP
    =E*P*ENP*ETP
    =E*EN*NT*ENP
    =E*EN*NP*ENT
    =E*ET*NT*ETP
    =E*ET*TP*ENT
    =E*EP*NP*ETP
    =E*EP*TP*ENP
    =N*T*EN*NP
    =N*T*ET*TP
    =N*T*ENT*NTP
    =N*P*EN*NT
    =N*P*EP*TP
    =N*P*ENP*NTP
    =N*EN*ET*ENP
    =N*EN*EP*ENT
    =N*ET*NT*NTP
    =N*EP*NP*NTP
    =N*NT*TP*ENT
    =N*NP*TP*ENP
    =T*P*ET*NT
    =T*P*EP*NP
    =T*P*ETP*NTP
    =T*EN*ET*ETP
    =T*EN*NT*NTP
    =T*ET*EP*ENT
    =T*EP*TP*NTP
    =T*NT*NP*ENT
    =T*NP*TP*ETP
    =P*EN*EP*ETP
    =P*EN*NP*NTP
    =P*ET*EP*ENP
    =P*ET*TP*NTP
    =P*NT*NP*ENP
    =P*NT*TP*ETP
    =EN*ET*ENT*NTP
    =EN*EP*ENP*NTP
    =EN*NT*ENT*ETP
    =EN*NP*ENP*ETP
    =ET*EP*ETP*NTP
    =ET*NT*ENT*ENP
    =ET*TP*ENP*ETP
    =EP*NP*ENT*ENP
    =EP*TP*ENT*ETP
    =NT*NP*ETP*NTP
    =NT*TP*ENP*NTP
    =NP*TP*ENT*NTP
    =ENT*ENP*ETP*NTP
    Now I just have to figure out how to factor in information metabolism and the higher order objects, like small groups, dyads and types. I might also want to put things in both positive and negative terms, like someone who is and introvert necessarily is not and extrovert.
    Last edited by sindri; 01-07-2018 at 09:24 PM.

  3. #43
    sindri's Avatar
    Join Date
    Jan 2013
    TIM
    IEI
    Posts
    200
    Mentioned
    23 Post(s)
    Tagged
    0 Thread(s)

    Default

    Right
    Click
    ​..+
    Loop
    .
    .
    .
    .
    .
    .
    .

    .
    .
    .

    .
    .
    .
    .
    .
    .
    .
    .
    Last edited by sindri; 01-07-2018 at 10:03 PM.

Page 2 of 2 FirstFirst 12

Tags for this Thread

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •